3.2553 \(\int x^{-1+2 n} (a+b x^n)^5 \, dx\)

Optimal. Leaf size=40 \[ \frac {\left (a+b x^n\right )^7}{7 b^2 n}-\frac {a \left (a+b x^n\right )^6}{6 b^2 n} \]

[Out]

-1/6*a*(a+b*x^n)^6/b^2/n+1/7*(a+b*x^n)^7/b^2/n

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {266, 43} \[ \frac {\left (a+b x^n\right )^7}{7 b^2 n}-\frac {a \left (a+b x^n\right )^6}{6 b^2 n} \]

Antiderivative was successfully verified.

[In]

Int[x^(-1 + 2*n)*(a + b*x^n)^5,x]

[Out]

-(a*(a + b*x^n)^6)/(6*b^2*n) + (a + b*x^n)^7/(7*b^2*n)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int x^{-1+2 n} \left (a+b x^n\right )^5 \, dx &=\frac {\operatorname {Subst}\left (\int x (a+b x)^5 \, dx,x,x^n\right )}{n}\\ &=\frac {\operatorname {Subst}\left (\int \left (-\frac {a (a+b x)^5}{b}+\frac {(a+b x)^6}{b}\right ) \, dx,x,x^n\right )}{n}\\ &=-\frac {a \left (a+b x^n\right )^6}{6 b^2 n}+\frac {\left (a+b x^n\right )^7}{7 b^2 n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 27, normalized size = 0.68 \[ -\frac {\left (a-6 b x^n\right ) \left (a+b x^n\right )^6}{42 b^2 n} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 + 2*n)*(a + b*x^n)^5,x]

[Out]

-1/42*((a - 6*b*x^n)*(a + b*x^n)^6)/(b^2*n)

________________________________________________________________________________________

fricas [B]  time = 0.77, size = 74, normalized size = 1.85 \[ \frac {6 \, b^{5} x^{7 \, n} + 35 \, a b^{4} x^{6 \, n} + 84 \, a^{2} b^{3} x^{5 \, n} + 105 \, a^{3} b^{2} x^{4 \, n} + 70 \, a^{4} b x^{3 \, n} + 21 \, a^{5} x^{2 \, n}}{42 \, n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+2*n)*(a+b*x^n)^5,x, algorithm="fricas")

[Out]

1/42*(6*b^5*x^(7*n) + 35*a*b^4*x^(6*n) + 84*a^2*b^3*x^(5*n) + 105*a^3*b^2*x^(4*n) + 70*a^4*b*x^(3*n) + 21*a^5*
x^(2*n))/n

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b x^{n} + a\right )}^{5} x^{2 \, n - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+2*n)*(a+b*x^n)^5,x, algorithm="giac")

[Out]

integrate((b*x^n + a)^5*x^(2*n - 1), x)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 88, normalized size = 2.20 \[ \frac {a^{5} x^{2 n}}{2 n}+\frac {5 a^{4} b \,x^{3 n}}{3 n}+\frac {5 a^{3} b^{2} x^{4 n}}{2 n}+\frac {2 a^{2} b^{3} x^{5 n}}{n}+\frac {5 a \,b^{4} x^{6 n}}{6 n}+\frac {b^{5} x^{7 n}}{7 n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(2*n-1)*(b*x^n+a)^5,x)

[Out]

1/7*b^5/n*(x^n)^7+5/6*a*b^4/n*(x^n)^6+2*a^2*b^3/n*(x^n)^5+5/2*a^3*b^2/n*(x^n)^4+5/3*a^4*b/n*(x^n)^3+1/2*a^5/n*
(x^n)^2

________________________________________________________________________________________

maxima [B]  time = 0.59, size = 87, normalized size = 2.18 \[ \frac {b^{5} x^{7 \, n}}{7 \, n} + \frac {5 \, a b^{4} x^{6 \, n}}{6 \, n} + \frac {2 \, a^{2} b^{3} x^{5 \, n}}{n} + \frac {5 \, a^{3} b^{2} x^{4 \, n}}{2 \, n} + \frac {5 \, a^{4} b x^{3 \, n}}{3 \, n} + \frac {a^{5} x^{2 \, n}}{2 \, n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+2*n)*(a+b*x^n)^5,x, algorithm="maxima")

[Out]

1/7*b^5*x^(7*n)/n + 5/6*a*b^4*x^(6*n)/n + 2*a^2*b^3*x^(5*n)/n + 5/2*a^3*b^2*x^(4*n)/n + 5/3*a^4*b*x^(3*n)/n +
1/2*a^5*x^(2*n)/n

________________________________________________________________________________________

mupad [B]  time = 1.36, size = 87, normalized size = 2.18 \[ \frac {a^5\,x^{2\,n}}{2\,n}+\frac {b^5\,x^{7\,n}}{7\,n}+\frac {5\,a^3\,b^2\,x^{4\,n}}{2\,n}+\frac {2\,a^2\,b^3\,x^{5\,n}}{n}+\frac {5\,a^4\,b\,x^{3\,n}}{3\,n}+\frac {5\,a\,b^4\,x^{6\,n}}{6\,n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(2*n - 1)*(a + b*x^n)^5,x)

[Out]

(a^5*x^(2*n))/(2*n) + (b^5*x^(7*n))/(7*n) + (5*a^3*b^2*x^(4*n))/(2*n) + (2*a^2*b^3*x^(5*n))/n + (5*a^4*b*x^(3*
n))/(3*n) + (5*a*b^4*x^(6*n))/(6*n)

________________________________________________________________________________________

sympy [A]  time = 117.65, size = 94, normalized size = 2.35 \[ \begin {cases} \frac {a^{5} x^{2 n}}{2 n} + \frac {5 a^{4} b x^{3 n}}{3 n} + \frac {5 a^{3} b^{2} x^{4 n}}{2 n} + \frac {2 a^{2} b^{3} x^{5 n}}{n} + \frac {5 a b^{4} x^{6 n}}{6 n} + \frac {b^{5} x^{7 n}}{7 n} & \text {for}\: n \neq 0 \\\left (a + b\right )^{5} \log {\relax (x )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(-1+2*n)*(a+b*x**n)**5,x)

[Out]

Piecewise((a**5*x**(2*n)/(2*n) + 5*a**4*b*x**(3*n)/(3*n) + 5*a**3*b**2*x**(4*n)/(2*n) + 2*a**2*b**3*x**(5*n)/n
 + 5*a*b**4*x**(6*n)/(6*n) + b**5*x**(7*n)/(7*n), Ne(n, 0)), ((a + b)**5*log(x), True))

________________________________________________________________________________________